Emodin-mediated cross-linking enhancement for extracellular matrix homeostasis.

نویسندگان

  • Lihua Jian
  • Chen Zhang
  • Guangfeng Chen
  • Xiujuan Shi
  • Yu Qiu
  • Yunyun Xue
  • Shuzhang Yang
  • Lixia Lu
  • Qionglan Yuan
  • Guotong Xu
  • Ming Ying
  • Xiaoqing Liu
چکیده

The extracellular matrix (ECM) is an essential element of mammalian organisms, and its cross-linking formation plays a vital role in ECM development and postnatal homeostasis. Defects in cross-link formation caused by aging, genetic, or environmental factors are known to cause numerous diseases in mammals. To augment the cross-linking formation of ECM, the present study established a ZsGreen reporter system controlled by the promoter of lysyl oxidase-like 1 gene (LOXL1), which serves as both a scaffold element and a cross-linking enzyme in the ECM. By using this system in a drug screen, we identified emodin as a strong enhancer of LOXL1 expression that promoted cross-linking formation of ECM in all the tested systems, including human fibroblast cells, cultured human skin tissues, and animals that received long-term emodin treatment. Collectively, the results suggest that emodin may serve as an effective drug or supplement for ECM homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immobilization of the Alkaline Phosphatase on Collagen Surface via Cross-Linking Method

Background: Collagen, the most abundant protein in the human body, and as an extracellular matrix protein, has an important role in the fiber formation. This feature of the collagen renders  establishment of the structural skeleton in tissues. Regarding specific features associated with the collagen, such as, formation of the porous structure, permeability and hydrophilicity, it can also be use...

متن کامل

Matrix cross-linking-mediated mechanotransduction promotes posttraumatic osteoarthritis.

Osteoarthritis (OA) is characterized by impairment of the load-bearing function of articular cartilage. OA cartilage matrix undergoes extensive biophysical remodeling characterized by decreased compliance. In this study, we elucidate the mechanistic origin of matrix remodeling and the downstream mechanotransduction pathway and further demonstrate an active role of this mechanism in OA pathogene...

متن کامل

Emodin inhibits extracellular matrix synthesis by suppressing p38 and ERK1/2 pathways in TGF-β1-stimulated NRK-49F cells.

Emodin has been demonstrated to inhibit the fibrotic process in chronic renal disease, but its mechanisms have yet to be fully elucidated. This study was carried out to investigate the effects of emodin on extracellular matrix (ECM) synthesis in TGF-β1-stimulated NRK-49F cells. NRK-49F cells stimulated with TGF-β1 were incubated with various concentrations of emodin. ECM proteins, including col...

متن کامل

Regulatory T Cells Resist Cyclosporine-Induced Cell Death via CD44-Mediated Signaling Pathways

Cyclosporine A (CSA) is an immunosuppressive agent that specifically targets T cells and also increases the percentage of pro-tolerogenic CD4+Foxp3+ regulatory T cells (Treg) through unknown mechanisms. We previously reported that CD44, a receptor for the extracellular matrix glycosaminoglycan hyaluronan (HA), promotes Treg stability in IL-2-low environments. Here, we asked whether CD44 signali...

متن کامل

Emodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial-mesenchymal transition and fibroblast activation

Aberrant activation of TGF-β1 is frequently encountered and promotes epithelial-mesenchymal transition (EMT) and fibroblast activation in pulmonary fibrosis. The present study investigated whether emodin mediates its effect via suppressing TGF-β1-induced EMT and fibroblast activation in bleomycin (BLM)-induced pulmonary fibrosis in rats. Here, we found that emodin induced apoptosis and inhibite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 446 4  شماره 

صفحات  -

تاریخ انتشار 2014